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Basic formulas for the two-time correlation functions are derived using the 
Poisson representation method. The formulas for the chemical system in 
thermodynamic equilibrium are shown to relate directly to the fluctuation- 
dissipation theorems, which may be derived from equilibrium statistical 
mechanical considerations. For nonequilibrium systems, the formulas are 
shown to be generalizations of these fluctuation-dissipation theorems, but 
containing an extra term which arises entirely from the nonequilibrium 
nature of the system. These formulas are applied to two representative 
examples of equilibrium reactions (without spatial diffusion) and to a 
nonequilibrium chemical reaction model (including the process of spatial 
diffusion) for which the first two terms in a systematic expansion for the 
two-time correlation functions are calculated. The relation between the 
Poisson representation method and Glauber-Sudarshan P-representation 
used in quantum optics is discussed. 

KEY WORDS: Master equations; chemical reactions; reaction-diffusion 
systems; Poisson representation; two-time correlation functions; fluctua- 
tion-dissipation theorems. 

1. I N T R O D U C T I O N  

In  this paper we extend our earlier work (1~ (hereafter referred to as I) on the 

Poisson representat ion into the realm of two-time correlations, which are of 

central  importance in the study of nonequi l ib r ium statistical mechanics. Our  

aims in this paper  are (i) to provide formulas from which we may calculate 

two-time correlat ion funct ions from Poisson representat ion techniques, (ii) 
to show how to carry out  such calculations in part icular  representative cases, 
and  (iii) to relate these formulas  to more general statistical mechanics 
results, in part icular  to f luctuat ion-dissipat ion theorems. 
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In I we have shown how chemical master equations can be transformed 
into exact Fokker-Planck equations by the use of the Poisson representation 
method and have investigated quite thoroughly all aspects of single-time 
correlations. In order to make this paper reasonably self-contained, we 
briefly review the Poisson representation method in Section 2. We derive 
in Section 3 formulas for two-time correlations in equilibrium and in 
nonequilibrium steady-state situations. 

The equilibrium formulas are directly related to the fluctuation-dissipa- 
tion theorems of Bernard and Callen, (2,a) but the nonequilibrium formulas 
contain extra terms, which represent the fluctuations in excess of equilibrium. 

In Section 4 we give a brief treatment of the two-time correlations for 
both equilibrium and nonequilibrium systems in the lowest order of the 
system size expansion. Section 5 is devoted to an explicit calculation of the 
next higher correction in three typical cases. 

Section 6 is not directly related to the previous parts. In it we relate our 
formulas to similar formulas which arise in the Glauber-Sudarshan P- 
representation (5,6) used in quantum optics. This section may be omitted 
without loss of continuity. Section 7 summarizes our conclusions. 

2. A R E V I E W  OF THE P O I S S O N  R E P R E S E N T A T I O N  M E T H O D  

The Poisson representation method is based on an expansion of the 
probability distribution in Poisson distributions. For a multivariate 
probability distribution P(X, t) we have 

P(X, t) = ~ d~ [ ~  e-~(c~x~/X~!)]f(e, t) (1) 

where f ( e ,  t) is the Poisson representation quasiprobability. Here X is a 
vector (X1, X2,..., X, ..... XN), whose elements X, are nonnegative integers. 
In this paper, X, will be the number of molecules of a certain chemical 
component X,. 

The moments of P(X, t) satisfy 

( x l ( x l  - 1 ) . . .  ( x l  - r + 1 ) X ~ ( x ~  - 1) . - .  (X~ - s + 1 ) . . .>  

f de alra2 . . . .  f ( r  t) = @lra2 . . . .  ) (2) 

SO that the factorial moments of P(X, t) are equal to the moments o f f ( e ,  t). 
Consider an n-component reacting system involving p different reactions 

P ~ Md'X,, l,...,s (3) ~=IN~ X~ ,~ -  ~=z P = 
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where N~ p (M~ p) represents the number of molecules of X~ that appear on 
the lhs (rhs) of the pth reaction, and k J  and kp ~ are the corresponding 
forward and backward reaction rate constants. 

The master equation for the reaction (3), based entirely on combinatorial 
kinetics, may be written as 

dP(X, t) 
dt 

_ _  = ~=~kp F (X~ + N~ p - M~) ! \  Np ( ~  -- ~ [  )P(X + - M ~, t) 

+ M .  ,) (~"7 -----N-~)~ 7 - ' - -  + - N", p = l  " 

-( , :~ (X, - ~/,),)P(X, t)] (4) 

Substituting (1) into (4), we can transform (4) into a generalized Fokker-  
Planck equation for f (=,  t): 

i 1 p=l i=i 

(5) 
where 

i=l ~=i 

If a particular component in (3) is held at a fixed concentration, then the 
corresponding a variable in (5) should be set equal to a constant and 
the corresponding derivative dropped. This merely amounts to setting the 
appropriate M~ p (N~ p) equal to zero along with a redefinition of k~ B (kpe). 

It is evident from (5) that if ~ M~ p and Y.~ N~ ~ are not greater than two, 
i.e., if (3) involves only bimolecular steps (which is almost always the case 
in realistic situations), then the Fokker-Planck equation (5) involves 
derivatives of no more than second order and may be written as 

- i~. Ai'Sv(a) f(~t, t) 

+ ~2 �9 i ~as B's[J(~176 t) 
i , j  = 1 

(7) 
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A**' = Mi t' - NJ' 

B~j[J(=)] = 8,j ~ [ M ~ P ( M i  p - 1) - N i P ( N i  p - 1)]Jp(=) 
p 

+ (1 - 8 , j ) ~  [MiPMj p - N~PNfllJp(,,) 
p 

(8) 

(9) 

da~/dt = ~ A~PJ~(~,) + ~ c,j[J(=)l~j(t) (10) 
p J 

where 

and 

cA3(~)] = [{B[J(=)I}*%j (11) 

and ~:j(t) are Gaussian stochastic noise sources, with 

<~:j(t)) = 0, (~,(t)~ej(t')} = 8,j 8(t - t ')  (12) 

For calculating quantities of interest from (10) in the inverse powers of the 
system size, it is convenient to define 

"t 1 = r (13) 

K /  = k / (  V) - Z, z~# + l, Kp B = kpB(V)-:, v,~+l (14) 

and thereby explicitly exhibit the volume dependence of various quantities 
involved. Equation (10) then becomes 

&ddt = ~ AN~(ri) + E ~ c,[a(ri)]~,(t) (15) 
p 1 

E = 1 / v / P  

Perturbative calculations then proceed through expanding thus 

ri(t) = rio(t) + eril(t) + e2ri2(t) + ... (16) 

Since we are using It6 definition of a stochastic differential equation in such 
perturbative calculations, certain rules have to be kept in mind. These have 
been discussed in I. 

where 

From the point of view of calculations, rather than working with the Fokker-  
Planck equation (7), it proves much more convenient to work with the 
equivalent stochastic differential equation (which we use in the It6< 7) form) 
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3. BASIC F O R M U L A S  FOR T W O - T I M E  CORRELATION 
FUNCTIONS 

The two-time correlation function is directly related to the mean 
product function 

(Xr(t)X~(t')) = ~ XrX~P(X, t]X', t')P(X', t') (I7) 
X X '  

where P(X', t') is the unconditional probability that the system is in a state 
X' at time t '  and P(X, t IX', t') is the conditional probability that the system 
is in state X at time t given that it was in state X' at time t'. 

Both P(X', t ') and P(X, tlX', t') will obey a master equation over 
respectively the variables X', t '  and X, t. In transforming to the Poisson 
representation, we must transform both of these, and this is not straight- 
forward. We will wish to express our results in terms of appropriate Poisson 
quasiprobability. 

We note that 

P(X', t') = f d= [~  e-%(~k')x~'/X~',lf(=', t' ) (18) 

which defines f(=' ,  t'). We now define f(=,  tlX, t) by 

P(X, t,X', t ' ) =  f d= [ ~  e-~,(~Ox,/X~!]f(=, tIX' , t') (19) 

Thus f(=,  t IX', t') is the quasiprobability in = space arising from an initially 
sharp X space state. Noting that 

we see that 

P(X, t'lX', t') = ~x,x, (20) 

f(=,  t 'lX', t') = I-~ [e~J( - 1) x/3X/(c9)] (21) 
J 

We now define the =-space conditional probability f( , , ,  t]=', t') to be the 
conditional =-space probability of the system being in the state = at time t, 
given that it was in state =' at time t', so that it will be the solution to the 
=-space Fokker-Planck equation with the initial condition 

f(=,  t'[=', t') = 3(,, - =') (22) 

Since the Fokker-Planck equation is linear, we find that 

f (=,  t lX', t') = f d='~I [e%'(-1)x,'sx/(%')]f(=,.t I=', t') (23) 
J 
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we now substitute (23), (19), and (18) into (17). In the resulting expression, 
the sum over X is trivial. It merely replaces X~ by c~r. Summing over X' 
and noting that 

( -  1)x;Sx;(%")(%')xQx~'l : 8(%" - %') (24a) 
X s ' 

the lhs of (24a) being the Taylor expansion of 8(~s" - %'), and similarly 

X/(-  1)x;Sx;(%")(%')xQx/! = %'(a/&~/)8(%" - %') 
X s" 

we find that 

(X~(t)X~(t')> 

j { ]) = d a d " '  d = " ~  exp (ch" - cq') %' 

x [aS(=" - = ' ) / & < ] f ( , , ,  t l=",  t ' ) f ( , , ' ,  t') 

and integrating by parts 

(24b) 

(25) 

/. 
= J dcx d~' c~%'f(~, t I ~', t ' )f(~ ' ,  t') 

+ f d~' [%'~-~ f d=,J(",tl"',t')]f(=',t3 (26) 

we can now identify two types of terms. 
The first term is the two-time mean product function in the Poisson 

representation, @r(t)~s(t')). The second term is the average over the initial 
distribution f(a', t') of the response function to a variation of the initial 
condition. Thus, writing 

f d= ~f(ot,  tlQt', t') =- (~T(t)[ [or', t ']) (27) 

i.e., the mean of ~ given the initial condition a', then the second term may 
be written as 

f d=' ~,,'(a/e%')(~,T(t)] t'])f(r [=', t') 

_= (%'(a/~j)(c~(t)[[Qt', t ' ] ) )  (28) 

Thus the second term is the average over the initial quasiprobability of a 
response function. 
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Remembering that the a-space mean (at(t)} is equal to (Xr(t)}  for all t, 
we derive 

(X~(t), Xs(t')} = @~(t), ~s(t')} + (%'(8/Sa~')@~(t)l[a', t']}} (29) 

Here we have introduced the notation 

(a, b} = (ab} - (a} (b}  (29a) 

for the correlation function (a, b}. 
Modifications to these formulas when the indices r, s refer to continuous 

labeling of spatial position are treated in Section 5. 

3.1. Appl icat ion to Equi l ibr ium Systems 

We showed in I that in equilibrium situations, the unconditional 
quasiprobability (in a grand canonical ensemble) is 

f(a)eq = 8(a - a(eq)) (30) 

so that the X-space distribution is Poissonian: There are then two results 
of this. 

(i) The variables a(t) and a(t') are nonfluctuating quantities with values 
=(eq). Thus 

(at(t), as(t')>eq = 0 (31) 

(ii) The equilibrium mean in the second term is trivial. Thus 

1 (Xr(t),  Xs(t')} = ~s ~ (~r(t')l[a', t ']) (32) 
~ '  = r  

This result is in fact exactly that of Bernard and Callen, (2,3~ which relates 
a two-time correlation function to a derivative of the mean of a quantity 
with respect to a thermodynamically conjugate variable. The proof of the 
result is so simple that we shall explain it here, in a form suitable for our 
work. Consider a system in which the numbers of molecules of chemical 
species )(1, )(2 .... corresponding to a configuration I of the system are 
XI(I), X2(I) .... and it is understood that these chemical species may react 
with each other. Then in a grand canonical ensemble, as demonstrated in I, 
the equilibrium distribution function is 

Z- I (P  .) e x p { ( 1 / k T ) I ~  la.,X,(I) - E(I)I  } (33) 

where Z(~) is the grand canonical partition function. As pointed out in I, 
the chemical potentials/h for a reacting system cannot be chosen arbitrarily, 
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but must be related by the stoichiometric constraints of the allowable 
reactions. 

Now we further define the quantities 

(X~, t][1, t']) (34) 

to be the mean values of the quantities X~ at time t under the condition that 
the system was in a configuration I at time t'. Then a quantity of interest is 
the mean value of (34) over the distribution (33) of initial conditions, namely 

<X~, tl[~, t']> = ~ <X~, tL[J, t ']>Z-~(~) 
J 

When the chemical potentials satisfy the equilibrium constraints, this quan- 
tity will be time independent and equal to the mean of X~ in equilibrium, but 
otherwise it will have a time dependence. Then, with a little manipulation 
one finds that 

IkT ~-~ (X~, tl[l~, t'])]~=~(eq = (X~(t), Xj(t')).q (36) 

The left-hand side is a response function of the mean value to the change 
in the chemical potentials around equilibrium, and is thus a measure of 
dissipation, while the right-hand side, the two-time correlation function in 
equilibrium, is a measure of fluctuations. 

This is a different form of fluctuation-dissipation theorem from that 
most often considered, in which the response is to an impressed external 
field introduced into the Hamiltonian, and the relationship to the generalized 
susceptibility thus defined involves the imaginary part of the Fourier trans- 
form of the two-time correlation function (see, e.g., Refi 4). However, the 
result (36) follows as a special case, in which the external field has a step- 
function time dependence. 

To make contact with the Poisson representation result (32), we note 
that the chemical potentials tLj in ideal solution theory (which we have shown 
in I to be equivalent to our form of the master equation) are given by 

/~[(X)] = kTlog(X~) + const (37) 

Using (37), we find that (36) becomes 

(x~(t), xj(t')) = <xj> e-Z-x,) <x~, t iM(x>] ,  t ']) ~,,~=o,~oq 
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Since the ideal solution theory gives rise to a distribution in X~ that is 
Poissonian, it follows that in that limit 

<Jr,, t l [N<x)], t ']) = <cq, t I [a', t']> (39) 

with e'  = (X). Thus (38) becomes 

(Jri(t), Xj(t')) = ~j ~ @i, t][=', t])  ='==~q) 

Thus (32) is the ideal solution limit of the general result (36). Thus, the 
general formula (29) can be considered as a generalization of the Bernard- 
Callen result to systems that are not in thermodynamic equilibrium. 

3.2. Nonequi l ibr ium Steady  States 

The general formula (29) is considerably different from the equilibrium 
result and the two terms are directly interpretable. The second term is the 
equilibrium contribution, a response function, but since the system is not 
in a well-defined equilibrium state, we take the average of the equilibrium 
result over the various contributing ,,-spate states. The first term is the 
contribution from the a-space fluctuations themselves and is not directly 
related to a response function. It represents the fluctuations in excess of 
equilibrium: 

By integrating the second term in (26) by parts we may also derive a 
slightly different formula 

(Xr(t), Xs(t')) - =  @~(t), %(t')) -- @r(t)) 

- ~(t)%(t') ~ log f(=', r) (41) 

which is useful when f(Qt, t) is explicitly known. 

4. RESULTS FOR L INEARIZED S Y S T E M S  

If  (15) is linearized by putting 

rl(t) = ~l(ss) + ,Yh(t) (42) 

where ~l(ss) are the macroscopic steady-state values given by 

&;Jp(rl(ss)) = 0, p = 1,..., s (43) 

then in the lowest order in E this gives a linear stochastic differential equation 
for ~h, 

d~h/dt = -F~h(t )  + B~(t) (44) 
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Then 

and 

(ar(t), as(t')> = ~ V ( e x p [ - F ( t  - t')l}~r,(71~,,z(t'), ~ , l ( t ' ) )  (45) 
T" 

a~s' (~r, t][=', t ']> = <~7r,1, t l [ ~ ,  t']> = { e x p [ - F ( t  - t')]}r~ 

(46) 

Thus by using the statistical properties (12) of the Langevin source ~(t) and 
substituting in (29), we derive 

(X~(t), Xs( t ' ) )  = V ~  { e x p [ - - F ( t -  t')]}rr'[('qr',Z(t'), r/s,z(t')~ + 3r'.sr/s(SS)] 
T" 

= ~ {exp[- F(t  - t')]}~,(X~,(t'), X , ( t ' ) )  (47) 
t '  

where we have used the fact that in the lowest order 

(X , ( t ' ) ,  Xs( t ' ) )  = (ar(t'), as(t')) + 3rs(a~(t')) 

= V[(~Tr, l(t '),  Vs,l(t ')) + 3r,,%(SS)] (48) 

This result is the same as that obtained by Kitahara, (8~ Kubo et al., ~9~ and 
Keizer C~~ using various different approaches. When specialized to systems 
in thermodynamic equilibrium, the Poissonian nature of the variance matrix 
(X~(t'),  X~(t')) gives the simpler result 

(X~(t), X~(t'))~q = (exp[-  F(t  - t')])~(Xs).q (49) 

5. APPLICATIONS: HIGHER ORDER CORRECTIONS 

In this section we shall calculate next higher order corrections to the 
results obtained in Section 4. Higher order corrections in a specific case 
have also been calculated by van Kampen Cl1> using his system size expan- 
sion. We shall consider three examples, each chosen to bring out a special 
feature. Our first example is a simple nonlinear reaction with a Poissonian 
steady state and serves to illustrate the technique. The second one is a 
simple two-variable equilibrium reaction with a conservation law. Finally, 
we consider the second-order phase transition mode ,<12-~5~ including spatial 
diffusion, and discuss the effect the corrections have on the analytic 
structure of the two-time correlations. 

5.1. A Non l inear  React ion w i t h  a Poissonian S teady  S ta te  

Consider the reaction 

A kl~ 2X 
k 2  

(50) 
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the stochastic differential equat ion for  which is 

d~/dt = (~1 - ~2~)  + 42(~1 - ~ 2 ) ] ~ / ~ : ( t )  (51) 

Because we hold the total  quant i ty  of  A fixed, (50) is not  a genuine equi- 
l ibr ium reaction. However ,  it has a Poissonian steady state, as a consequence 
of  which we have 

Kz - ~2~2(ss) = 0 (52) 

exactly. To  solve (51) per turbat ively  we expand ~(t) thus 

~(t) = ~0(t) + ~ t ( t )  + , ~ ( t )  + ... (53) 

Substi tut ing (53) in (51) and equat ing like powers  of  e, we get 

d~)o(t) 
dt - ~ - K2n~ (53a) 

drip(t) - -2~2no( t )nz ( t  ) + {2[~:~ - K2no2(t)]}~2~(t) (53b) 
dt 

2Kzrl~ (53C) 
@2(t)dt - -2~c2~7~ - K2~7~ - {2[~z - x2no2(t)]} 1/2 

Note  that  if we put  ~o(t) = r](ss), the above equat ions become singular. 
This arises because of  the square roo t  nature  of  the noise coefficient and  
the fact tha t  the expansion is being done abou t  a point  at which the 
f luctuations vanish. 

Defining 

G(t, t ' )  = exp -2K2 dt"~7o(t") (54) 

and solving (53a)-(53c) subject to the initial condit ion 

~(0)  = O, i />  1 

(hencefor th  we shall choose the initial t ime to be zero) we obtain  

vl(t) = ~i 

(vl~(t)) = s  

--K2fO t 

dt '  G(t, t'){2[Kz - x2~7o2(t')]}l/2~(t ') (55a) 

dt '  G2(t, t'){2[~z - K2*2o~(t')]} zl2 (55b) 

dr'  G(t, t ' ) (~h2( t ' ) )  

dr' G(t, t') dt" a~(t ', t")[2(,~ - ,~o2(t")l  (55c) 
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Now 

~(~( t ) )  .(o>=.(ss> ~7o(t) E~ ~ ( ~ ( t ) >  "o (~ (56) 
~ ( 0 )  = ~o(O) .o(o~=,,~s.> + ~o(O) 

where we have used the abbrevia ted  nota t ion  

~3(r/(t)) _ D(~(t){ [r/(O), 0]) (57) 
~ ( o )  - ~ ( o )  

For  the response function, we have simply to carry out  the appropr ia te  
differentiation in (56) and evaluate those at the steady state. I t  is clear that  

t%7~ %(o>=~(~)= G(t, 0){~o(O>=~(~ = exp[-2K2~(ss) t ]  (58) 
~0(0) 

The next term involves the derivative of (55c) with respect to To(0), but since 

the final factor is zero when 70(0) = ~(ss), only the term in which it is dif- 
ferentiated is nonzero at this point. Thus proceeding, it is straightforward 
to derive the second term. Substituting all these in the formula for the two- 

time correlation function, we have 

+ 2~c2.q(ss) e - 2 ~  ~(s~* (59) 

5.2. An Equi l ibr ium React ion w i t h  a Conserved Q u a n t i t y  

law 
We now consider a genuine equil ibrium reaction with a conservat ion 

X 2 Y  (60) 
/% 

the stochastic differential equations for  which are 

d~h(t)/dt = - [,~l"qz(t) - K2~22(t)] 

d~72(t)/dt = 2[Klan(t) - K2~722(t)] 
+ E{Z[~lTh(t) -- -q22(t)])l/2~:(t) 

To  display the conserved quantity,  we define 

X~(t) = ~h(t) 

Xa(t) = 2~71(t) + ~72(t) 

(61a) 

(61b) 

(62a) 

(62b) 
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which gives 

dX~/dt = -(K~ - •2Xs 2 + 4K2XaX~ - 4K2X~ 2) (63a) 

dX3/dt= ~[2(K~ - K2Xa 2 + 4K2X3X~ - 4~2X~2)]~/~(t) (63b) 

It follows from (63b) and It6 rules that 

d{Xa(t)>/di = 0 (64) 

i.e., 

Xa(eq) = <Xa(0)> = <2X + Y> (65) 

The equilibrium value of Z~(eq) = -ql(eq) is given in terms of Xa(eq) by 

K~ - K2Xa2(eq) + 4Xa(eq)X~(eq) - 4K2Xz2(eq) = 0 (66) 

exactly. ~2(eq) may be deduced by using the conservation law. In terms of 
t"1 and Xa the two-time correlations may be written as 

(2X(t)  + Y(t), X(0)> = Jf~(eq) (67a) 

<2X(t) + Y(t), Y(0)> = X3(eq) - 2Xl(eq) (67b) 

. . . .  [~<Xl(t)> 0(X~(t))] (67c) 
<X(t), X(0)> = ~(eq) [ i  ~ + 2 8X3(0) ]x=x<eq) 

. . . .  Va<x~( t )> l  
<X(t), Y(0)> = xateq)[ ~ ]x=x(eq) (67d) 

Thus, to evaluate the various two-time correlations, one only needs to 
calculate the response functions [#<Xx(t)>/~Xl(O)]le q and [a<xl(t)>/ax3(o)]lo~. 
Following the procedure outlined above, the results are found to be 

<X(t), X(O)> = Xl(eq)[2~ba + ( 1 -  2~ba )e-~t - ~ 

[h 
<X(t), Y(0)> = Xa(eq)[a (1 i 

where 

(68) 

1 b H(t)] (69) e-~*) + ~ a  

a = K1 + 4K2X3(eq) - 8K2Xl(eq) 

b = 2K2J(a(eq) - 4~2Xl(eq) = (a - K1)/2 

(70) 

(71) 
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and 

H ( t )  = (2Kz/a)[1 - e-~t(1 + at)] 

- (8Kzb/a2)[1 -- e-~*(1 + at + {a2t2)] 

+ (16~czb2/a3)[1 + e-at(1 - 2at  - �89 2) - e-Z~t(2 + at)] 

(72) 

Notice the nondecaying terms in these results, which are a consequence of 
using the grand canonical ensemble, in which the conserved quantities do 
not have a sharply defined value. Thus, the decay constant of the two-time 
correlation function of such conserved quantities is infinite. This means 
that when spatial dependence is omitted, the canonical and grand canonical 
ensembles give very different results. 

When diffusion is included (as shown for a linear system in Ref. 14) 
there is very little difference between the two ensembles. The two-time 
correlation function between conserved quantities is then damped in time 
by the process of diffusion. 

5.3. Nonl inear  React ion w i t h  D i f fus ion:  S e c o n d - O r d e r  
Phase Transi t ion  M o d e l  

We shall now investigate a nonequilibrium reaction which exhibits a 
second-order phase transition behavior ~1z-15) 

k2., k l .  
A + X~ 2X, B + X~ C (73) 

k4 k3 

including spatial diffusion, viewing the process of diffusion as an exchange 
of one particle at a time between cells in which the system is assumed to be 
divided. The master equation for reaction-diffusion systems has been treated 
thoroughly in Refs. 8, 14, and 16. The equivalent stochastic differential 
equation in this case is (as derived in I) 

d~7~ 2(Kz ~7~ ~ (74) --d{ = ~ D~jn: + ~% + (Kz - xz)~, - n, z + (,(t) 

where i, fi etc. are the cell labels, A V is the cell volume, and 

Vi = ~i /AV,  Ko A V  = ksC,  ~cz = k2A,  K1 = k l B ,  x~ A V - 1  =_ k4 

(75) 
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and 

with 

D~r = d ~ , -  ~ d~ 8,y (76) 
k 

d, i, j nearest neighbors (77) 
d,j = O, otherwise 

In the cont inuum notat ion (74) becomes 

dr(r, t ) / d t  = D V2~(r, t) + Ka + (K2 - K1)~(r, t) - ~7~2(r, t) 

+ {2[K2~(r, t) - ~2(r, t)]}~/2~(r, t) (78) 

Also in the cont inuum notat ion the relation 

<Xr(t), Xs(0)> = <~,r(t), ,~3(0)> + <~,s(0) a<,~r(t)] [,,(0), 01>/a%(0)> (79) 

becomes 

<p(r, t ) ,  p(r', 0)> = <,7(r, t), ~(r', 0)> + <,7(r', 0) 8<~(r, t)>/8~(r', 0)> 

(80) 

where p(r, t) corresponds to the density variable and 8(~/(r, t)>/8~)(r', 0) 
denotes the functional derivative of  ~(r, t) with respect to its initial value. 

In the limit ~a-+  0 and K2 - K1 > 0 the homogeneous  steady-state 
solution of  the nonfluctuating part  of  (78) is 

Putt ing 

in (78) and (80), we have 

~ ( s s )  = ~ 2  - ~1  ( 8 1 )  

= n(ss) + ~ (82) 

and 

d~(r, t ) / d t  = [D V z - -q(ss)]~ - ~2 

+ h{2[Klr/(ss) + (2xl -- K2)~ -- r t) (83) 

T(r, t; r', O) = (~(r, t ) ,  ~(r', 0)> + @7(ss) + ~(r', O)]{/~(r, t; r ' ,  0)>> 
(84) 
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where  we have  i n t roduced  the fo l lowing  abbrev ia t ions :  

T(r ,  t;  r ' ,  0) = <p(r, t),  p(r ' ,  0)> (85a) 

R(r,  t, r ' ,  0) = 3~(r, t) /3~(r,  0) (85b) 

Also  no te  that ,  as in I, we have  i n t roduced  a f o rm a l  expans ion  p a r a m e t e r  
in o rde r  to  ca r ry  ou t  a pe r tu rba t ive  so lu t ion  o f  the lhs o f  (83) and  hence  
tha t  o f  (84). We  set A = 1 at  the  end o f  the calcula t ion.  

I t  fo l lows f r o m  (62) t ha t /~ ( r ,  t ;  r ' ,  0) obeys  

d/~(r, t; r', 0) 
dt 

= [D V 2 - ~(ss)]/~(r, t; r ' ,  0) - 2-~(r, t )R(r ,  t; r ' ,  0) 

A[(2Kt -- K2) -- 2~(r, t ) ]R(r ,  t; r ' ,  0)((r ,  t)  
+ [2Ki~7(ss) + (2K1 -- K2)~(r, t )  -- ~2(r, t)]  ~75 (86) 

We now e x p a n d  ~(r, t) and  R(r,  t; r ' ,  0): 

= ~71 + A2~. + "", /~ = Ro + ,~R1 + A2R2 + .-- (87) 

Subs t i tu t ing  (87) in (83) and  (84) and  equa t ing  like powers  o f  A on  b o t h  
sides, we ob ta in  

d ~ ( r ,  t )  _ [ D  V 2 - ~7(ss)]'o~(r, t )  + [2Kl~/(ss)]~12~:(r, t )  (88a) 
dt 

d-o2(r , t)  _ [ D  7 2  - -  ~(ss)]~?2(r, t )  - r/12(r, t )  
dt 

+ (2K1 - K2)'q2(r, t ) ( ( r ,  t)  (88b) 
[2K~n(ss)] ~ 

d~3(r, t)  _ [D V 2 - "q(ss)l~Ta(r, t)  - 2~l(r,  t)'q2(r, t)  
dt 

(2K1 - ~2)'q2(r, t)sC(r, t) K22~h2(r, t)~:(r, t)  
- ( 8 8 c )  

+ [2Ki.O(ss)]I/2 2[2Klr](ss)] 3/2 

dRo(r, t; r ' ,  0) = [D V 2 - -q(ss)lRo(r, t; r ' ,  0) (89a) 
dt 

dRl(r, t; r ' ,  0) = [D V 2 - -q(ss)]Rl(r, t; r ' ,  0) - 2rh(r, t)Ro(r,  t; r ' ,  0) 
dt 

2K I -- K 2 _ . + [2-- (-~)~ ~o(,r, t; r, o)~(r, t) (89b) 
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The expansions for the first and second terms on the lhs of (84) are 

(~(r, t), ~(r', 0)) = a2(~,(r, t), ~,(r', 0)) + A4[(w2(r, t), *72(r', 0)) 

+ (~(r ,  t), %(r', 0)) + (%(r, t), ~/,(r', 0))] 

(90a) 

([~(ss) + {(r', 0)](/~(r, t; r', 0)))  

= ~(ss)(R0(r, t; r', 0)) + a2[(~2(r ', 0)(Ro(r, t, r', 0)))  

+ (~(r ' ,  0)(Rl(r, t, r', 0)))] (90b) 

Terms of O(a) and O(A 3) vanish identically because they involve averages 
of odd numbers of  factors of ~:(r, t). Also note that although the terms in 
the expansion (90a) differ from the corresponding terms in (90b) by a factor 
of a 2, they are really of the-same order in terms of the actual expansion 
parameter (AV) -1, which reappears as a cutoff on the q-integrals in the 
evaluation of the Fourier transforms of the various terms. This point has 
been explained at length in I. 

Keeping this in mind while grouping th~ terms on the lhs of (84), one 
finds that the lowest order contributions to the two-time correlation func- 
tion (p(r, t), p(r', 0)) are given by 

To(r, t; r', 0) = ('ql(r, t), "qz(r', 0)) + ~(ss)(Ro(r, t; r', 0)) (91) 

and the next order corrections are 

Tl(r, t; r', 0) = (',/2(r, t), ~/2(r', 0)) + ('ol(r, t), ~a(r', 0)) 
+ (,~a(r, t), ~z(r', 0)7 
+ (w2(r', 0)(Ro(r, t; r', 0))7 
+ (v,(r ' ,  0)(R,(r, t; r', 0)))  (92) 

To evaluate the expressions (91) and (92), one proceeds in two steps. The 
first step consists in solving (88a)-(88c) as a function of the initial values and 
(89a) and (89b) subject to the initial conditions 

Ro(r, 0; r', 0 )  = 8 ( r  - r ' ) ,  R~(r, 0; r', 0) = 0, i > 1 (93) 

This then enables one to express (91) and (92) in terms of the initial averages. 
The next step is to calculate the steady-state averages and substitute them for 
the initial averages that appear in the previous step. These two steps may be 
carried out rather straightforwardly by Fourier-transforming (88a)-(88c) 
and (89a)-(89b) with respect to the spatial variable. Here we shall merely 
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quote the results. The Fourier-Laplace transform of the lowest order 
contribution to the two-time correlation function turns out to be 

~Vo(q, q', s) = 8(q + q') [ Kl"r](ss) ] (94) 
s + Dq 2 + ~(ss) n(ss) + Dq ~ + ~(ss)[ 

The next higher correction is found to have the following analytic structure: 

a(q) + b(q) } 
Tz(q,q ' ,s)  = 8(q + q ' )  s +  Dq 2 + w(ss) [s + Dq 2 + ~(ss)] 2 

f• f f  d(q, s') c(q, s') ds' + ds' (95) 
+ s 5-s s' q212 + 271(SS) q2 + 27/(SS) "Ji- S 

[The full expression for 5Pl(q, q', s) is rather involved and is presented in 
the appendix.] 

It follows from (94) and (95) that 2P0(q, q', s) has a simple pole at s = 
- [ D q  2 + ~(ss)]. When the next higher correction is included, the two-time 
correlation acquires a double pole at s = - [ D q 2 +  2~(ss)], and branch 
cuts at -[2~(ss) + Dq2/2] and - [ D q  2 + 2~(ss)]. As ~ ( s s ) ~  0, i.e., as the 
critical point is approached, and as q --> 0, all the singularities of T(q, q', s) 
collapse to zero This gives rise to a very singular behavior near the critical 
point for long wavelengths, and is probably an indication of nonclassical 
behavior of the dynamic critical exponents. 

6. PO ISSON R E P R E S E N T A T I O N  A N D  ITS RELATION TO 
THE G L A U B E R - S U D A R S H A N  P - R E P R E S E N T A T I O N  

A well-known procedure in quantum optics for deriving c-number 
equations from the operator equations satisfied by the density operator 
makes use of the Glauber-Sudarshan P-representation (5'6~ 

p(a, a*) j Ir 

where a and a* represent the photon creation and annihilation operators 
respectively, Ifi) is a coherent state, and ~(a~(/3, fl*) is a c-number function 
of fi and fi* obtained by writing p(a, d )  in an antinormal form and a and a t 
by fl and/?*, respectively. 

Let us now consider the case when the density operator is diagonal in 
the number representation 

o(a, a t) = ~ ,  P(n)]n)(n[ (97) 
n 
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Then from (96) we have the following representation for 

P(n) = I d2/3 e-~B* (/3/3" )~ 
a ~- n! t~)(/3'/3") (98) 

Also, when (97) holds, #~a~(/3,/3*) is a function of /3/3* only. Hence, on 
introducing the variables 

/3 = ~ e ~ (99) 

in (98) and carrying out the trivial ~o integral, we get 

P(n) = f dc~ e- ~(c~'~/n ])#(~(~z) (100) 

Now P(n) has all the properties of a classical probability distribution, i.e., 

0, = 1 0 0 1 )  

and therefore (100) corresponds exactly to the expansion of a probability 
distribution in terms of Poisson distributions. Having thus seen how the 
Poisson representation arises from the Glauber-Sudarshan P-representation, 
we shall now investigate the relationship between the expressions for the 
two-time averages obtained from the two methods. 

For a quantum Markovian system, it may be shown r that two-time 
operator averages may be expressed in the P-representation as 

(M(a, a*, t)N(a, a*, 0)) 

- ( ~/3 d~/3' ~~ tl/3',/3'*, O) 
, j  qr qr 

where 

(M(a, a*, t)N(a, a*, 0)) = Tr[M(a, a +, t)N(a, a*, O)p(a, a*, t)] 

and #(a~(/3, fi*, t 1/3',/3'*, t) is the conditional probability in the P-representation. 
For the photon number correlation function, (102) gives 

= f d2fl-- dZfl'- ~*/3~~ t lY, Y*, O) (a+(t)a(t)a*(O)a(O)) 
J q'g "IT 

• [(/3'* - y * ,  0)] (lO3) 

We now assume that at time t = 0 the density operator is diagonal in the 
number representation and further that the dynamics of the system is such 
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that it stays diagonal at a later time. This implies that ~(a~(/3,,/3,,, 0) and 
#(a~(/3,/3,, t 1~3, '/3,,, 0) are functions of /3'*/3' and /3*/3 only. Under these 
assumptions, on introducing the variables 

/3 = ~/~ e ~, /3'= ~ e ~~ 

we find that (103) becomes 

(n(t)n(O)) = f d ,  d~' ~'g(a~(c~, t]~', O)~a~(c/, O) 

+ c9, O)]t>a'(~ ', O) (104) f d~' ~ [ f d~ ~(~ tl ~', 

which is identical to the result (26) for a single-variable case. 
Thus it is clear that the Poisson representation is a special case of the 

more general Glauber-Sudarshan P-representation. It must be emphasized 
that the similarity between the two methods is only at a mathematical level, 
and from a physical point of view the systems under consideration in the 
two cases are quite different. In the quantum optical context, one is con- 
sidering a quantum statistical ensemble of photons, and the Poissonian 
nature of the photon number distribution arises when one has a single mode 
of the electromagnetic field, i.e., when one has a quantum mechanical 
coherent state. On the other hand, the Poisson distribution in mean number 
of molecules in the context of chemical systems arises from the averaging 
of the grand canonical ensemble distribution in thermodynamic equilibrium 
over the many modes in which a chemically reacting molecule may exist, 
as we have shown in I. A further major difference between the two repre- 
sentations is the role which the quasiprobabilities/~(~(/3,/3*) in the Glauber-  
Sudarshan P-representation and f (a)  in the Poisson representation play in 
the description of the corresponding physical systems. ~(~>(/3, t3") is a measure 
of the deviation of the quantum optical system from the more interesting 
coherent behavior that occurs in a nonequilibrium situation, whereas f(c,) 
is a measure of the deviation of the chemical systems from the uninteresting 
Poissonian behavior that arises in thermodynamic equilibrium. 

7. C O N C L U S I O N S  

We have managed in this paper to extend the Poisson representation 
methods to two-time correlation functions and have shown how the methods 
can be used to gain insight into the nature of fluctuation-dissipation theo- 
rems in equilibrium and away from equilibrium. The ability to calculate 
higher order corrections systematically and reasonably simply is an advantage 
which we feel the Poisson method has compared to other methods. Although 
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we can show that very singular behavior is expected at a critical point, we 
are still unable to provide a satisfactory perturbat ion theory valid in that  
neighborhood.  Work  along this direction is proceeding. 

APPENDIX 

The full expression for the next higher correction to the Four ier -  
Laplace transform of  the two-time correlation function - ' Tz(q, q ,  s) is as 
follows 

where 

Tt(q, q', s) = 8(q + q')2P1(q, s) 

Tl(q, s) - 1 [2,q'q2(ss) 
s+g(q~[ g ~  

f #ql x [g(q,) + g(q _ q~) + g(q)]g(q~)g(q _ ql) 

+ 4x,~(SS)[KlW(ss) - (2K~ - ~%)g(q)] 
g2(q) 

f dq~ x g(q , ) [g(q~)  + g(q)  + g(q  _ q~)] 

_ 2~q~(ss)(2K, - Ku)(  dq~ 
g2(q) j g ( q l )  + g(q _ q~) + g(q) 

+ 2K 2~(ss) _ ~ 2g(q) _ Kl(q) (  dq~ ] 
g2(q) j g ( q , ) ]  

2K~2r/(ss) [ (  dq~ ] 2K,-q(ss)(2,q - K2) 
+ [s + g(q)]  ~ [ J g ( q ~ ) J  - [s + g(q)][s - g(q)]g(q) 

[[" dql[2g(q) + g(q~)] 
x [ J g ( q ) - T g - ~ )  + g(q - q~) 

~" dql[2g(q) + g(ql)] ] 
2 s 

2xl~(ss) f dql 
s + g(q) [s + g(ql) + g(q - ql)]g(ql) 

2Kl"q(ss) f dql [2,q~(ss) - (2~q - ~%)g(q)] 
+ [s + g(q)]2g(q) d Is +- ~ 747 g(-q--  q l ~  (AI)  

g(q) = Dq 2 + -q(ss) (A2) 
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I t  is clear f rom the above  that  in the complex  s p lane Tl(q, q', s) has a pole  
and a doub le  pole  at  s = - g ( q ) .  The pole at  s = g(q), which arises f rom 
the th i rd  te rm in (A1) is spurious,  for its res idue is zero. The  last  three terms 

in (A1) also give rise to  cuts. Al l  of  these three terms conta in  an integral  

o f  the fo rm 

I = ( dq~ r (A3) 
2 s + g(q - ql) + g(ql)  

D o i n g  the angular  integrals ,  we find for  I 

w fo ~ q~ dql r  log s + 2~7(ss) + Oq~ 2 + O(q + q~)Z 
I = -~ q s + 2r/(ss) + Dq~ 2 + D(q - ql) 2 

which gives rise to the cuts at  s = - D [ q  2 + 2r/(ss)] and  s = 
- [ D q 2 / 2  + 2~(ss)]. 

Hav ing  thus  de te rmined  the analyt ic  s t ructure  of  T,(q, q' ,  s) in the 
complex  s plane,  we may  wri te  a d ispers ion re la t ion for  ~ ( q ,  q' ,  s)  as in 

(95). The  residues a(q) and  b(q) and the discont inui t ies  across  the cuts 
c(q, s ')  and  d(q, s ' )  in (95) m a y  be ca lcula ted  f rom (A1) if  desired. 
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